Genesis of tropical cyclone Madi (2013): Appraisal of recent understanding

VPM Rajasree¹, Amit P Kesarkar¹, Jyoti N Bhate¹, U Umakanth¹, Vikas Singh¹ and T. Harish Varma¹

A presentation by
Ms. Rajasree VPM

Weather and Climate Research Group
¹National Atmospheric Research Laboratory (NARL)
Department of space, India
email: rajasree.vpm@gmail.com
Scientific problem

“The pathway by which cumulus convection organizes to form a large scale tropical cyclone vortex is an unsolved problem in dynamic and tropical meteorology”
-Hendricks et al. (2004)

Dunkerton et al., 2009
- Marsupial paradigm (H1-H3)
 H1- Roll up of vorticity/ wave breaking
 H2- Pouch region
 H3- Meso-scale vortices

Objectives:
- To test the applicability of marsupial paradigm over NIO
- Understand the pathway of genesis of Madi (2013)
Data and methodology

- IMD best track dataset
- NOAA/AOML TCHP images
- MSG satellite images
- ERA interim reanalysis
- NCEP ADP upper air and surface observations
- Satellite Radiances

Satellite Sensors

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMSU A</td>
<td>NOAA 15,16,18, EOS Aqua and METOP-2</td>
</tr>
<tr>
<td>AMSU B</td>
<td>NOAA-15, 16, 17</td>
</tr>
<tr>
<td>AIRS</td>
<td>NOAA-18, and METOP -2</td>
</tr>
<tr>
<td>MHS</td>
<td>EOS Aqua</td>
</tr>
</tbody>
</table>

High resolution analysis is created using 3Dvar assimilation
Experimental design

Weather Research and Forecasting - WRF (Version 3.6.1) & WRFDA

Diagram:
- **Computational domain:**
 - 21/00Z Assimilation cycle started
 - 06/03Z Declared TD (IMD)
 - 07/00Z Weakened
 - 13/00Z Upgraded to CS

Timeline of key events:
- 21/00Z Assimilation cycle
- 06/03Z Declared TD
- 07/00Z Weakened
- Forecast time window
- 21Z
- 00Z
- 03Z

Experimental design:
- **Details**
 - **Configuration**
- **Dynamical core**
 - ARW, compressible, Non-hydrostatic
- **Horizontal grid distance**
 - 18km (Domain 1), 6km (Domain 2)
- **Vertical levels**
 - 64
- **Model top**
 - 100 hPa
- **Initial and boundary conditions**
 - GFS analysis (0.5 x 0.5), 6 hourly
- **Time step**
 - 30 s
- **Microphysics**
 - Thompson
- **Long wave radiation**
 - RRTM
- **Short wave radiation**
 - Dudhia scheme
- **Surface layer**
 - Monin Obukhov similarity theory
- **Land surface**
 - Noah Land surface
- **PBL**
 - Mellor Yemada Janjic
- **Cumulus**
 - Kain-Fritsch scheme

28 July 2016 WSN - 16
3Dvar analysis shows matching track and the recurvature of Madi cyclone also well simulated.

- Formed on Dec 6 and dissipated on Dec 13
- Category 1 on Dec 8; 986 hPa and 65kt
- Unique track with near northerly movement

IMD in green and 3Dvar analysis in red

28 July 2016
Large scale conditions

SST and TCHP

MSG satellite image

CAPE & CINE

04Dec2013, Warm water SST > 26.5°C, TCHP > 100KJcm⁻², CAPE > 2500 Jkg⁻¹
Large scale conditions

Deep layer shear

850hPa vorticity

Favorable conditions for genesis

28 July 2016

WSN - 16
Tropical cyclone Madi’s precursor disturbance originated from a westward moving disturbance and it is tracked for 15 days prior to TD declaration.

Phase speed of propagation is -7.2 ms\(^{-1}\)
Pouch is identified as a region of enhanced moisture

Pouch formation – H2

850hPa vorticity

TPW

Pouch is identified as a region of enhanced moisture
Pouch formation – H2

OW parameter

Madi forms in a rotation dominant region
Intensification of convection – H3

Proto-vortex is intensified by convective activity (H3)

28 July 2016

WSN - 16
Pathway of genesis of Madi (2013)

Profiles

Hovmoller

Closely follows the bottom-up pathway
Pathway of genesis of Madi (2013)

Closely follows the bottom-up pathway
Role of VHTs on genesis of Madi (2013)

Absolute vorticity

Diabatic heating

Diabatic vortex merger in the genesis environment

28 July 2016
Role of VHTs on genesis of Madi (2013)

Potential vorticity

\[
\frac{\partial \eta}{\partial t} = -\nabla \cdot \eta - \hat{k} \cdot \nabla \times \omega \frac{\partial V}{\partial p} + \hat{k} \cdot \nabla \times F
\]

\[
\eta = \zeta + f
\]

\[
\omega = \frac{Dp}{Dt}
\]
Diabatic heating rate is dominated by the latent heating in the convective updrafts.
Conclusions

- The paper presents the comprehensive analysis of the genesis sequence of a very severe cyclonic storm Madi over the BoB region to examine the applicability of recent concepts and theories of cyclogenesis.
- For this purpose, we have generated high resolution analysis using meso-scale model WRF and available data sets viz. satellite data and in-situ weather observations, using 3DVAR data assimilation technique.
- Additional data sets used include ERA-interim reanalysis, IRBT observations, MSG and TRMM 3B42 rainfall observations.
- The parent disturbance responsible for genesis of tropical cyclone Madi is tracked from fifteen days prior to the period of genesis in the developed high resolution analysis.
- The closed cyclonic circulation protects the Madi precursor from all kinds of deformations and acts as a “pouch region” associated with the parent disturbance.
Conclusions

- Large scale priming of environment agrees with the hypotheses of the marsupial theory of tropical cyclogenesis.
- Our results indicate that, development of warm core inside the pouch region is continuous process about two days prior to actual time of cyclogenesis.
- The diabatic heating more than 10 K h\(^{-1}\) and collocated increase in the vertical velocity more than 0.5 ms\(^{-1}\) is evident in the genesis environment of Madi cyclone.
- These convective vortices tilts and converges under the influence of the low level absolute vorticity to form the low level cyclonic circulation leading to the genesis of tropical cyclone Madi.
- Our investigation suggests that the bottom-up mechanism was operational for the genesis of tropical cyclone Madi.

Rajasree et al., 2016, JGR
Thank you...